If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20t-2t^2=0
a = -2; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·(-2)·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*-2}=\frac{-40}{-4} =+10 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*-2}=\frac{0}{-4} =0 $
| 12.9=v+10.3 | | -5/2=5/3r | | -1m=-3/7 | | Y=2.50x-500 | | 2x-3=5×+4 | | 3^2x+1+3^x+2=12 | | 3w-5=4w+3 | | -10=6y+280 | | q(-11)=-132 | | 8(k=3)=56 | | -3/4=-5/8y | | -25x2+150x-225=0 | | 7^(3x-4)=49 | | 3^5x-1=9^3x | | 14=8=x | | 2/a+3/5a=13/2 | | d-2(2)=20 | | x2-(x+1)2=4 | | 12x(5x-2)+6=-29-3(x-7) | | 6a=9a | | 5.8×10=c | | 18+7x=29-4x | | n-10=31 | | 4n^2=-289 | | 7+4x-13=0 | | 2-n=1/2(n+1) | | 4n2+289=0 | | 6(y+3)=3(y=2) | | x+5=19# | | -5y+y/3=0 | | 1/3x+1=1/2x-1 | | 36/108=30/x |